YoloV3
YoloV3¶
1.简介¶
YOLO 系列的算法(经典的v1~v3),是单阶段目标检测网络的开山鼻祖,YOLO—You only look once,表明其单阶段的特征,正是由于网络简单,单阶段的效率较快,使其区别于 Faster-RCNN 为代表的两阶段目标检测器,从一开始推出至今,便以速度快和较高的准确率而风靡目标检测领域,受到广泛使用和好评。
而Yolov3是其中的经典和集大成者(当然官方最近也推出了 Yolov4 ),其以融合了残差网络的 Darknet-53 为骨干网络,融合了多尺度,3路输出的 feature map,上采样等特点,使其模型精度和对小目标检测能力都大为提升。
本文,我们提供了 Yolov3 的 OneFlow 版实现,和其他版本实现的区别在于,我们将输出特征的 nms 过程写进了 C++ 代码中,通过自定义 user op 的方式来调用,当然,我们也同时支持直接使用 python 代码处理 nms。
2.快速开始¶
开始前,请确保您已正确安装了oneflow,并且在python3环境下可以成功import oneflow。
- git clone 此仓库到本地
git clone --recursive https://github.com/Oneflow-Inc/oneflow_yolov3.git
pip install -r requirements.txt
./scripts/build.sh
-
libdarknet.so
-
liboneflow_yolov3.so
预训练模型¶
我们使用了 Yolov3 原作者提供的预训练模型—yolov3.weight ,经转换后生成了 OneFlow 格式的模型。下载预训练模型:of_model_yolov3.zip ,并将解压后的 of_model
文件夹放置在项目 root 目录下,即可使用。
3. 预测/推理¶
运行:
sh yolo_predict.sh
sh yolo_predict_python_data_preprocess.sh
运行脚本后,将在 data/result
下生成检测后带 bbox 标记框的图片:
参数说明 - --pretrained_model 预训练模型路径
-
--label_path coco 类别标签路径(coco.name)
-
--input_dir 待检测图片文件夹路径
-
--output_dir 检测结构输出路径
-
--image_paths 单个/多个待检测图片路径,如:
--image_paths 'data/images/000002.jpg' 'data/images/000004.jpg'
训练同样很简单,准备好数据集后,只需要执行:sh yolo_train.sh
即可,数据集制作过程见下文【数据集制作】部分。
4. 数据集制作¶
Yolov3 支持任意目标检测数据集,下面我们以 COCO2014 制作过程为例,介绍训练/验证所需的数据集制作,其它数据集如 PASCAL VOC 或自定义数据集等,都可以采用相同格式。
资源文件¶
下载 COCO2014 训练集和验证集图片,将解压后的 train2014
和 val2014
放在 data/COCO/images
目录下
(如果本地已下载过 COCO2014 数据集,可以 ln 软链接 images 至本地 train2014
和 val2014
的父目录)
准备资源文件:labels
,5k.part
,trainvalno5k.part
wget -c https://pjreddie.com/media/files/coco/5k.part
wget -c https://pjreddie.com/media/files/coco/trainvalno5k.part
wget -c https://pjreddie.com/media/files/coco/labels.tgz
脚本¶
在 data/COCO
目录下执行脚本:
# get label file
tar xzf labels.tgz
# set up image list
paste <(awk "{print \"$PWD\"}" <5k.part) 5k.part | tr -d '\t' > 5k.txt
paste <(awk "{print \"$PWD\"}" <trainvalno5k.part) trainvalno5k.part | tr -d '\t' > trainvalno5k.txt
# copy label txt to image dir
find labels/train2014/ -name "*.txt" | xargs -i cp {} images/train2014/
find labels/val2014/ -name "*.txt" | xargs -i cp {} images/val2014/
执行脚本将自动解压缩 labels.tgz
文件,并在当前目录下生成 5k.txt
和 trainvalno5k.txt
,然后将 labels/train2014
和 labels/val2014
的所有 label.txt
文件复制到对应的训练集和验证集文件夹中( 保证图片和 label 在同一目录 )。
至此,完成整个数据集的准备过程。
5.训练¶
修改 yolo_train.sh
脚本中的参数,令:--image_path_file="data/COCO/trainvalno5k.txt"
并执行:
sh yolo_train.sh
即可开始训练过程,更详细的参数介绍如下:
- --gpu_num_per_node 每台机器使用的gpu数量
- --batch_size 批大小
- --base_lr 初始学习率
- --classes 目标类别数量(COCO 80;VOC 20)
- --model_save_dir 模型存放文件夹路径
- --dataset_dir 训练/验证集文件夹路径
- --num_epoch 迭代总轮数
- --save_frequency 指定模型保存的epoch间隔
说明¶
目前如果调用 yolo_predict.sh
执行,数据预处理部分对 darknet
有依赖
其中:
predict decoder
中调用 load_image_color
、letterbox_image
函数
train decoder
中调用 load_data_detection
函数
主要涉及以下操作,在后续的版本中会使用 OneFlow decoder ops
替换
- image read
- nhwc -> nchw
- image / 255
- bgr2rgb
- resize_image
- fill_image
- random_distort_image
- clip image
- random flip image and box
- randomize_boxes
- correct_boxes